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Dynamical systems on large networks are complicated since the A graphon is W:[0,1]* - [0,1] is a symmetric function that we interpret like an adjacency du (x) = f W (x,y)sinQr(u(y) — u(x)))dy
structure of the network can make analysis challenging. matrix for a graph with an uncountable vertex set. In this way we can also encode a graph dt 0 '
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Adjacency Matrix as a graphon using its adjacency matrix as a step function.

Vector in R™ - / Interaction Function R For the small-world graphon W there are m-twisted equilibria again. We
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" j#i Given a graphon W we generate the adjacency matrix for a random graph by L ;

Let A be a small-world network and you find a family of

equilibrium solutions called m-twisted states.[2]l4] P(Aj=1)=1-P(4;=0)=W (_’_) for s > 7, Aip =0, anddj; = Aj;.

n’'n A: Yes, the solution persists even on binary graphs generated from the

small-world graphon.
\_ 1 This is a matrix of Bernoulli random variables, so it is not close to W in the L! sense.!!]

The Wilson-Cowan Model with Graphons
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We solved the discrete model on a complete graph with edge weights () /n.
Now we start with the constant graphon W (x, y) = Q and generate Erdos-
Rényi random graphs from it.
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Q: The strict graph structure makes this solution easy to find, but
would it persist if the network were slightly changed?

Reaction-Diffusion on a Graphon o
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Neuron Activation (Wilson-Cowan) Replacing the adjacency matrix with a graphon yields a continuous problem
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Models the level of excitement in a network of neurons.!3!
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d—zz(t, x) =F(u(t,x)) = f(u(t, x)) +f W(x, y)D(u(t, x), u(t, )’))d)’- (3) o
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t n TEi exp(,u — 0l ) Question The continuous system has a constant solution. For the discrete cases we
X . . . find nearby solutions and compare their stability to the continuous case.
Local damping Nonlocal excitation What do solutions to (3) tell us about solutions to the discrete system (1)? Y P O y
Regular graphs of degree Q give bistability in the network. Main Result e o o PG .
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. _ Hypothesis 1. (A sequence of random graphs) W:[0,1]% - [0,1] is a graphon and Solutions /. i i— Eigenvalues
5| - C is a constant solution . . close to —————— | SO
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