

Snakes and Lattices: Understanding the Bifurcation Structure of Localized Solutions to Lattice Dynamical Systems

Jason Bramburger and Björn Sandstede Division of Applied Mathematics, Brown University

Lattice Dynamical Systems

Spatially-localized structures occur in the natural world, such as in vegetation patters, crime hotspots, and ferrofluids. Taylor and Dawes [\[2\]](#page-0-0) inspected stationary localized solutions of the lattice dynamical system

 $\dot{U}_n = d(U_{n+1} + U_{n-1} - 2U_n) - \mu U_n + 2U_n^3 - U_n^5$ where $d > 0$ represents the strength of coupling between nearestneighbours, and μ is a bifurcation parameter. They identified solutions which lead to a snakes and ladders bifurcation diagram:

Setting $\dot{U}_n = 0$ and letting $u_n = U_{n-1}$ and $v_n = U_n$ gives the discrete dynamical system

This material is based upon work supported by an NSERC PDF held at Brown University.

We demonstrate that the behaviour of heteroclinic orbits of (2) (2) dictates the bifurcations of localized steady-states of [\(1\)](#page-0-1).

Snaking is caused by intersecting stable and unstable manifolds that move through each other as μ increases.

Isolas are caused by intersecting stable and unstable manifolds that do not move through each other as μ increases

Further inspection of system [\(1\)](#page-0-1) reveals a number of localized steadystates, including some with oscillatory plateaus. Here the bifurcation diagram does not snake, but leads to a series of stacked isolas.

The anti-continuum limit $d = 0$ in [\(1\)](#page-0-1) allows one to explicitly construct singular heteroclinic orbits.

 \circ Away from the bifurcation points $\mu = 0, 1$ we can use the implicit function theorem to continue these heteroclinic orbits into $d > 0$

 \circ Near the bifurcation points $\mu = 0, 1$ there are infinitely many bifurcations taking place. We can use singularity theory to unfold these bifurcations for small *d >* 0.

$$
u_{n+1} = v_n,
$$

$$
v_{n+1} = 2v_n - u_n + \frac{1}{d}(\mu v_n - 2v_n^3 + v_n^5).
$$

In the map [\(2\)](#page-0-2) localized solutions correspond to homoclinic orbits.

Acknowledgements

 $I_{n,m} = d(U_{n+1,m} + U_{n-1,m} + U_{n,m+1} + U_{n,m-1} - 4U_{n,m})$ $-\mu U_{n,m} + 2U_{n,m}^3 - U_{n,m}^5, \quad (n,m) \in \mathbb{Z}^2.$ (3)

Snaking Versus Isolas

The Anti-Continuum Limit

These methods allow one to explicitly determine the behaviour of the intersection of stable and unstable manifolds as μ is varied. This produces tangible affirmation of our theoretical work, something which is probably too difficult to be undertaken in the spatially continuous cases explored in [\[1\]](#page-0-3).

References

- [1] M. Beck, J. Knobloch, D. Lloyd, B. Sandstede, and T. Wagenknecht, *SIAM J. Math. Anal.* **41**, (2009) 936-972.
- [2] C. Taylor and J.H.P. Dawes, *Phys. Rev. A* **375**, (2010) 14-22.

 $n^{5}, n \in \mathbb{Z}, (1)$

Higher Dimensional Lattices

Inspecting localized steady-states on higher dimensional lattices reveals a rich and complex bifurcation structure which is not necessarily reminiscent of the one-dimensional lattice case [\(1\)](#page-0-1). Consider the twodimensional analogue of [\(1\)](#page-0-1) given by

$$
\dot{U}_{n,m} = d(U_{n+1,m} - \mu U)
$$

Here we find the existence of localized steady-states with a four-fold rotational symmetry, but the bifurcation structure no longer has the regular structure of the one-dimensional system:

Ongoing Work: We are optimistic that the methods of continuing solutions from the anti-continuum limit $(d = 0)$ can be used to understand the irregular structure shown above.

Goal: Provide insight into the bifurcations of localized solutions in dimensions greater than one - an area that completely lacks a rigorous theoretical foundation in the PDE setting.

