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Lattice Dynamical Systems

Spatially-localized structures occur in the natural world, such as in veg-
etation patters, crime hotspots, and ferrofluids. Taylor and Dawes [2]
inspected stationary localized solutions of the lattice dynamical system

U̇n = d(Un+1 + Un−1 − 2Un)− µUn + 2U 3
n − U 5

n, n ∈ Z, (1)
where d > 0 represents the strength of coupling between nearest-
neighbours, and µ is a bifurcation parameter. They identified solutions
which lead to a snakes and ladders bifurcation diagram:
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Further inspection of system (1) reveals a number of localized steady-
states, including some with oscillatory plateaus. Here the bifurcation
diagram does not snake, but leads to a series of stacked isolas.
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Setting U̇n = 0 and letting un = Un−1 and vn = Un gives the discrete
dynamical system

un+1 = vn,

vn+1 = 2vn − un + 1
d
(µvn − 2v3

n + v5
n).

(2)

In the map (2) localized solutions correspond to homoclinic orbits.
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Snaking Versus Isolas

We demonstrate that the behaviour of heteroclinic orbits of (2) dictates
the bifurcations of localized steady-states of (1).

Snaking is caused by intersecting stable and unstable manifolds that
move through each other as µ increases.

Isolas are caused by intersecting stable and unstable manifolds that do
not move through each other as µ increases

The Anti-Continuum Limit

The anti-continuum limit d = 0 in (1) allows one to explicitly construct
singular heteroclinic orbits.
◦ Away from the bifurcation points µ = 0, 1 we can use the implicit
function theorem to continue these heteroclinic orbits into d > 0
◦ Near the bifurcation points µ = 0, 1 there are infinitely many bi-
furcations taking place. We can use singularity theory to unfold these
bifurcations for small d > 0.

These methods allow one to explicitly determine the behaviour of the
intersection of stable and unstable manifolds as µ is varied. This pro-
duces tangible affirmation of our theoretical work, something which is
probably too difficult to be undertaken in the spatially continuous cases
explored in [1].
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Higher Dimensional Lattices

Inspecting localized steady-states on higher dimensional lattices re-
veals a rich and complex bifurcation structure which is not necessarily
reminiscent of the one-dimensional lattice case (1). Consider the two-
dimensional analogue of (1) given by

U̇n,m = d(Un+1,m + Un−1,m + Un,m+1 + Un,m−1 − 4Un,m)
− µUn,m + 2U 3

n,m − U 5
n,m, (n,m) ∈ Z2.

(3)

Here we find the existence of localized steady-states with a four-fold
rotational symmetry, but the bifurcation structure no longer has the
regular structure of the one-dimensional system:
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Ongoing Work: We are optimistic that the methods of continuing solu-
tions from the anti-continuum limit (d = 0) can be used to understand
the irregular structure shown above.
Goal: Provide insight into the bifurcations of localized solutions in di-
mensions greater than one - an area that completely lacks a rigorous
theoretical foundation in the PDE setting.


