Motion Detection Using Dynamic Mode Decomposition
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3. Threshold with smallest average error is optimal

4. Test the threshold value on V and compute error
5. Threshold with lowest overall error is optimal

Error as a Function of the Threshold

If Ais diagonalizable, we can decompose: X; = Z Cm/l,lf,ll//m
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Objective: leverage this to implement an
automatic motion detection system for video
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=r—F Optimizing A* requires an error measure: E = FP 4+ ¢-FN Conclusion
) — " R MXN = - We have proposed a simple, effective, and interpretable
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