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The Swift-Hohenberg Equation

Figure 1: A localized steady-

state solution to (1) for n = 2.

Spatially-localized structures occur in the natu-
ral world, such as in vegetation patters, crime
hotspots, and ferrofluids. The Swift-Hohenberg
equation is a widely studied nonlinear partial dif-
ferential equation that can describe many spa-
tially localized structures. Radially-symmetric
solutions to the Swift-Hohenberg equation in n-
dimensional space satisfy the partial differential
equation

ut = −
1 + n− 1

r
∂r + ∂rr

2
u− µu + 2u2 − u3, (1)

where u = u(r, t), r := |x|, x ∈ Rn, and µ is a bifurcation parameter.

The dimension of the underlying space, n, enters explicitly into equa-
tion (1). The one-dimensional equation therefore exhibits significantly
different properties from the higher-dimensional Swift-Hohenberg equa-
tions:

One Dimensional Equation:
◦ Autonomous
◦ Non-Singular
◦ Hamiltonian

Higher Dimensional Equations:
◦ Non-autonomous
◦ Singular at r = 0
◦ Not Hamiltonian

Snaking Bifurcations
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In one spatial dimension (n = 1) equation (1)
possesses spatially localized pulse steady-states
which exhibit a bifurcation phenomena known as
snaking [1].
◦ Solutions of the form shown to the left bounce
between two different values of the parameter µ,
while ascending in the L2-norm by simply adding
another roll to the front of the wave train.
◦ It is known that these pulses come in pairs:
one with a maximum at r = 0 and another with
a minimum at r = 0.
◦ Bifurcation diagram resembles two intertwined
snakes which ascend vertically in an unbounded
manner.
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Snaking in Higher Dimensions

Moving to higher spatial dimensions (n = 2, 3) the bifurcation structure
of the pulse steady-state solutions splits into three distinct components:
a lower snaking branch, isolas, and an upper snaking branch.

Figure 2: Image taken from [2]

Lower Snaking Branch:
◦ Bifurcation behaviour
analogous to 1D equation
◦ Only extends vertically to
finite height

Isolas:
◦ Collection of closed curves
◦ Start after maximum
height of lower branch
◦ Only extend vertically to
finite height

Upper Snaking Branch:
◦ Start after maximum
height of isolas
◦ Rolls are added from the
back at r = 0
◦ Conjectured to extend
infinitely in the vertical
direction

Open Problems

1 What causes the lower branch to have finite height and why does it
behave similar to 1D snaking?

2 What drives the formation of the isolas and the upper snaking
branch?

3 Are the isolas and upper snaking branch unique to the
Swift-Hohenberg equation, or should they be expected when moving
to higher spatial dimensions in other reaction-diffusion type
equations which exhibit snaking in 1D?

Dimensional Perturbation

To understand the higher dimensional snaking cases, we focus on in-
troducing a dimensional perturbation into equation (1) by considering
n := 1 + ε, for small ε > 0. We are then able to use pertubative tech-
niques to continuously vary ε and inspect how the non-autonomous
perturbation effects the snaking bifurcation curves.

Spatial Dynamics

Steady-state solutions of (1) with this dimensional perturbation then
satisfy

0 = −
1 + ε

r
∂r + ∂rr

2
u− µu + 2u2 − u3,

which is now a fourth-order ordinary differential equation. Letting
u1 = u, u2 = ∂ru, u3 = (1 + ε

r∂r + ∂rr)u and u4 = ∂ru4, we can
consider the equivalent first order system

(u1)r = u2,

(u2)r = u3 − u1 −
ε

r
u2,

(u3)r = u4,

(u4)r = −u3 − µu1 + 2u2
1 − u3

1 −
ε

r
u4.

(2)

In the first order system (2) pulses correspond to solutions which start
near a cylinder in phase space, spiral around it for a long period of
time, and converge in forward time to the origin.

Results

◦ We are able to show that for small ε > 0 the lower snaking branch
is formed in a similar way to the one-dimensional snaking curves, and
letting L be this upper bound in L2-norm, we find that it changes as a
function of ε, and is approximately given by:

L = e
1
ε

◦ In more general PDEs, we determine sufficient conditions for the
lower snaking branch to have no upper bound based upon the flow in
the direction of the energy.
◦ The formation of the isolas and upper snaking branch still remain an
open topic of investigation which will be the subject of future work.
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