The Swift-Hohenberg Equation

Spatially-localized structures occur in the natu-
ral world, such as in vegetation patters, crime
hotspots, and ferrofluids. The Swift-Hohenberg
equation is a widely studied nonlinear partial dif-
ferential equation that can describe many spa-
tially localized structures.

Radially-symmetric
solutions to the Switt-Hohenberg equation in n- Figure 1: A localized steady-
dimensional space satisty the partial differential state solution to (1) for n = 2.
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where u = u(r,t), r := |x|, x € R", and p is a bifurcation parameter.

The dimension of the underlying space, n, enters explicitly into equa-
tion (1). The one-dimensional equation therefore exhibits significantly

different properties from the higher-dimensional Swift-Hohenberg equa-
tions:

One Dimensional Equation: Higher Dimensional Equations:

o Non-autonomous
o Singular at » = 0
o Not Hamiltonian

o Autonomous
o Non-Singular
o Hamiltonian

Snaking Bifurcations

In one spatial dimension (n = 1) equation (1)
possesses spatially localized pulse steady-states
which exhibit a bifurcation phenomena known as
snaking |1].
o Solutions of the form shown to the left bounce
between two different values of the parameter wu,
while ascending in the L?-norm by simply adding
another roll to the front of the wave train.

o It is known that these pulses come in pairs:
one with a maximum at r = 0 and another with
a minimum at r = 0.

o Bifurcation diagram resembles two intertwined
snakes which ascend vertically in an unbounded
manner.
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Snaking in Higher Dimensions

Moving to higher spatial dimensions (n = 2, 3) the bifurcation structure
of the pulse steady-state solutions splits into three distinct components:
a lower snaking branch, isolas, and an upper snaking branch.

Lower Snaking Branch:

. | § " ®| o Bifurcation behaviour
' D analogous to 1D equation
60 f § o Only extends vertically to
§ finite height
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= ; o Collection of closed curves
sl ffi;'-_lf?}j{f 3 | o Start after maximum
height of lower branch
o Only extend vertically to
finite height
N Upper dnaking Branch:

' | o Start after maximum

height of isolas

o Rolls are added from the

back at r =0

o Conjectured to extend

w  Infinitely in the vertical
direction

Figure 2: Image taken from [2]

Open Problems

® What causes the lower branch to have finite height and why does it
behave similar to 1D snaking?

® What drives the formation of the isolas and the upper snaking
branch?

® Are the isolas and upper snaking branch unique to the
Swift-Hohenberg equation, or should they be expected when moving
to higher spatial dimensions in other reaction-diffusion type
equations which exhibit snaking in 1D7

Dimensional Perturbation

To understand the higher dimensional snaking cases, we focus on in-
troducing a dimensional perturbation into equation (1) by considering
n =1+ ¢, for small € > 0. We are then able to use pertubative tech-
niques to continuously vary € and inspect how the non-autonomous
perturbation effects the snaking bifurcation curves.
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Spatial Dynamics

Steady-state solutions of (1) with this dimensional perturbation then
satisty
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which is now a fourth-order ordinary differential equation. Letting
up = u, upy = Ou, uz = (1 + 20, + Op)u and uy = Jyuy, wWe can
consider the equivalent first order system
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In the first order system (2) pulses correspond to solutions which start
near a cylinder in phase space, spiral around it for a long period of
time, and converge in forward time to the origin.

Results

o We are able to show that for small € > 0 the lower snaking branch
is formed in a similar way to the one-dimensional snaking curves, and
letting L be this upper bound in L*norm, we find that it changes as a

function of €, and is approximately given by:
1

L =e:
o In more general PDEs, we determine sufficient conditions for the
lower snaking branch to have no upper bound based upon the flow in
the direction of the energy:.
o The formation of the isolas and upper snaking branch still remain an

open topic of investigation which will be the subject of future work.

References

1] M. Beck, J. Knobloch, D. Lloyd, B. Sandstede, and T. Wagenknecht, STAM
J. Math. Anal. 41 (2009), 936-972.

2] S. McCalla and B. Sandstede, Phys. D. 239 (2010), 1581-1592.




