Snaking in the Swift-Hohenberg Equation in Dimensions 1 + *ε*

Jason Bramburger and Björn Sandstede

Division of Applied Mathematics, Brown University

NA NSERC
NA CRSNG

The Swift-Hohenberg Equation

solutions to the Swift-Hohenberg equation in n - Figure 1: A localized steadydimensional space satisfy the partial differential state solution to (1) for $n = 2$. equation

Spatially-localized structures occur in the natural world, such as in vegetation patters, crime hotspots, and ferrofluids. The Swift-Hohenberg equation is a widely studied nonlinear partial differential equation that can describe many spatially localized structures. Radially-symmetric

$$
u_t = -\left(1 + \frac{n-1}{r}\partial_r + \partial_{rr}\right)^2 u - \mu u + 2u^2 - u^3,\tag{1}
$$

where $u = u(r, t)$, $r := |x|$, $x \in \mathbb{R}^n$, and μ is a bifurcation parameter.

In one spatial dimension $(n = 1)$ equation (1) possesses spatially localized pulse steady-states which exhibit a bifurcation phenomena known as *snaking* [\[1\]](#page-0-1).

◦ Solutions of the form shown to the left bounce between two different values of the parameter μ , while ascending in the L^2 -norm by simply adding another roll to the front of the wave train. ◦ It is known that these pulses come in pairs: one with a maximum at $r = 0$ and another with a minimum at $r = 0$.

The dimension of the underlying space, *n*, enters explicitly into equation [\(1\)](#page-0-0). The one-dimensional equation therefore exhibits significantly different properties from the higher-dimensional Swift-Hohenberg equations:

This material is based upon work supported by an NSERC PDF held at Brown University.

One Dimensional Equation:

- Autonomous
- Non-Singular
- Hamiltonian

Moving to higher spatial dimensions $(n = 2, 3)$ the bifurcation structure of the pulse steady-state solutions splits into three distinct components: a *lower snaking branch*, *isolas*, and an *upper snaking branch*.

- Higher Dimensional Equations:
- Non-autonomous
- \circ Singular at $r = 0$
- Not Hamiltonian

Snaking Bifurcations

◦ Bifurcation diagram resembles two intertwined snakes which ascend vertically in an unbounded manner.

Acknowledgements

Snaking in Higher Dimensions

◦ We are able to show that for small *ε >* 0 the lower snaking branch is formed in a similar way to the one-dimensional snaking curves, and letting L be this upper bound in L^2 -norm, we find that it changes as a function of ε , and is approximately given by:

> $L = e$ 1 *ε*

Lower Snaking Branch: ◦ Bifurcation behaviour analogous to 1D equation ◦ Only extends vertically to finite height

Isolas:

◦ Collection of closed curves ◦ Start after maximum height of lower branch ◦ Only extend vertically to finite height

Upper Snaking Branch: ◦ Start after maximum height of isolas ◦ Rolls are added from the back at $r = 0$ ◦ Conjectured to extend infinitely in the vertical direction

Open Problems

- ¹ What causes the lower branch to have finite height and why does it behave similar to 1D snaking?
- ² What drives the formation of the isolas and the upper snaking branch?
- **3** Are the isolas and upper snaking branch unique to the Swift-Hohenberg equation, or should they be expected when moving to higher spatial dimensions in other reaction-diffusion type equations which exhibit snaking in 1D?

Dimensional Perturbation

To understand the higher dimensional snaking cases, we focus on introducing a dimensional perturbation into equation [\(1\)](#page-0-0) by considering $n := 1 + \varepsilon$, for small $\varepsilon > 0$. We are then able to use pertubative techniques to continuously vary ε and inspect how the non-autonomous perturbation effects the snaking bifurcation curves.

satisfy

 $0 = \left(1 + \right)$ $u_1 = u, u_2 = \partial_r u, u_3 = (1 + \frac{\varepsilon}{r})$

> $(u_1)_r=u_2,$ $(u_3)_r=u_4,$

 $\bigg)$

In the first order system [\(2\)](#page-0-3) pulses correspond to solutions which start near a cylinder in phase space, spiral around it for a long period of time, and converge in forward time to the origin.

Results

◦ In more general PDEs, we determine sufficient conditions for the lower snaking branch to have no upper bound based upon the flow in the direction of the energy. ◦ The formation of the isolas and upper snaking branch still remain an open topic of investigation which will be the subject of future work.

References

[1] M. Beck, J. Knobloch, D. Lloyd, B. Sandstede, and T. Wagenknecht, *SIAM J. Math. Anal.* **41** (2009), 936-972.

[2] S. McCalla and B. Sandstede, *Phys. D.* **239** (2010), 1581-1592.